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In this article, we present the numerical computations of singular values and 
lower bounds of structured singular values, known as μ-values, for a family 
of Discrete Fourier Transform matrices. The μ-value is a well-known 
mathematical tool in linear control theory which speaks about the stability 
and instability analysis of feedback systems. The comparison of lower 
bounds of μ-values with the well-known MATLAB routine mussv is 
investigated. 
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1. Introduction 

*In the present article, our main objective is to 
discuss the numerical approximation of Structured 
Singular Values (SSV) for a family of Discrete Fourier 
Transform matrices. The-values introduced by Doyle 
Packard and Doyle (1993) are a well-known 
mathematical tool in control which discuss stability 
and synthesis of the linear control systems subject to 
certain class of uncertainties. The perturbation 
structures addressed by the structured singular 
value are very generic. These structures allows to 
cover all kinds of parametric perturbations which 
can be incorporated into the linear control system by 
means of both real and complex Linear Fractional 
Transformations LFT's, (Chen et al., 1996; 
Hinrichsen and Pritchard, 2005; Karow et al., 2010, 
2006; Packard and Doyle, 1993; Qiu et al., 1995). 
Unfortunately, it’s not possible to compute the exact 
values of SSV especially in higher dimensions 
computation of SSV. The reason is the fact that the 
exact computation is NP hard (Braatz et al., 1994). 
The here has been much written about the 
approximation of SSV; almost all of these numerical 
methods which are being used in practice 
approximated upper and lower bounds of SSV; the 
message from the computation of an upper bound of 
the SSV. 
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The upper bound of SSV provides sufficient 
conditions which guarantee the robust stability 
analysis of feedback systems, while on the other 
hand a lower bound provides sufficient conditions 
for guarantees the instability of the linear feedback 
systems in control. The well-known MATLAB 
function mussv available in the Matlab Control 
Toolbox approximates an upper bound of structured 
singular values by means of the known 
methodologies the like as diagonal balancing 
technique and Linear Matrix Inequality techniques 
(Fan et al., 1991). The approximation of lower bound 
of SSV is by means of the generalization of power 
technique (Packard et al., 1998). 

Let's consider then 𝑛-dimensional either a real 
(or a complex) matrix 𝑀. The matrix  𝑀 could be 
either square or rectangular in nature. Also consider 
a family of block diagonal matrices ∆𝐺  
 

∆𝐺= {Diag(𝛤𝑖 , 𝛼𝑖𝐼𝑗): 𝛤𝑖 ∈ ℂ𝑚𝑖,𝑚𝑖(ℝ𝑚𝑖,𝑚𝑗), 𝛼𝑖 ∈ ℂ(ℝ)}.         (1) 
 

In Eq. 1, 𝐼𝑗  is an identity matrix with the 

dimension 𝑗, same as the dimension of the given 
matrix 𝑀. 

 

Definition 1.1: Suppose that 𝑀 be a 𝑛-dimensional 
either square or a rectangular, real (or complex) 
matrix and also consider a family of block diagonal 
matrices ∆𝐺 . Then the SSV known as 𝜇-value is 
defined as: 

 

𝜇∆𝐺
=

1

min{‖∆‖2:∆∈∆𝐺,det(𝐼−𝑀∆)=0}
                    (2) 

 
In Definition 1.1, the quantity det(∙) is the 

determinant of a matrix (𝐼 − 𝑀∆). We also consider 
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the special case when the set ∆𝐺  allows us to have 
only pure complex uncertainties. We denote ∆𝐺

∗  
instead of ∆𝐺  for the family of block diagonal 
matrices. We note that observation that ∆∈ ∆𝐺  
implies the fact that exp(𝑖𝜑)∆∈ ∆𝐺  for any scalar 𝜑 ∈
ℝ. This lead us with the fact that ∆∈ ∆𝐺

∗  in such a way 
that 𝜌(𝑀) = 1 if and only if there exists the 
perturbation ∆′∈ ∆𝐺

∗  having the same unit 2-norm 
such that the matrix  𝑀∆′ has the maximum 
eigenvalue exactly equal 1, in turn this implies 
det(𝐼 − 𝑀∆′) = 0. The above discussion allows us to 
write down the following alternative expression for 
μ-value, that is: 

 

𝜇∆𝐺
(𝑀) =

1

min{‖∆‖2:∆∈∆𝐺
∗ ,ρ(𝑀∆)=1}

                   (3) 

 
In above Eq. 3, ρ(∙) is the spectral radius of a 

matrix 𝑀∆. 

2. μ- value based on structured 𝛆 spectral value 
sets 

The structured epsilon spectral value set of given 
matrix 𝑀 ∈ ℂ𝑛×𝑛 with respect to a perturbation level 
say 휀 is given as:  

 

Ʌ𝜀
∆𝐺(𝑀) = {𝜆 ∈ Ʌ(휀𝑀∆): ∆∈ ∆𝐺}                   (4) 

 
In Eq. 4, the quantity Ʌ(∙) express the spectrum of 

a matrix while the admissible perturbation ∆ 
possesses a unit 2-norm that is ‖∆‖2 = 1. For the 
special case when we have purely complex 
perturbations that is ∆𝐺

∗ , the structured spectral 

value set Ʌ𝜀
∆𝐺(𝑀) is nothing but simply a disk having 

its center at the origin. While for a more generic case 
that is: of mixed complex and real uncertainties, the 
set 

 

Ʃ𝜀
∆𝐺(𝑀) = {𝜉 = 1 − 𝜆: 𝜆 ∈ Ʌ𝜀

∆𝐺(𝑀)}                   (5) 

 
allows us to express μ-value as: 

 

𝜇∆𝐺
(𝑀) =

1

argmin{0∈Ʃ𝜀
∆𝐺(𝑀)}

.                    (6) 

 
For purely complex uncertainties, the underlying 

set ∆𝐺
∗  allows us to write down the alternative form 

of SSV as: 
 

𝜇∆𝐺
∗ (𝑀) =

1

argmin{max|𝜆|=1}
                    (7) 

 
here, 
 

𝜆 ∈ Ʃ𝜀
∆𝐺(𝑀). 

2.1. The mathematical problem 

We consider the following optimization problem 
(Rehman, 2017), 

 
𝜉(휀) = argmin|𝜉|                           (8) 

 

where 𝜉 ∈ Ʃ𝜀
∆𝐺(𝑀) for the fixed value of perturbation 

level of 휀, that is 휀 > 0. From above discussion, the 
structured singular values 𝜇∆𝐺

(𝑀) is the reciprocal 

of the minimum value of perturbation level 휀 so 
that 𝜉(휀) = 0. This suggests us to give a two-level 
algorithm that is inner and outer algorithm: In the 
inner algorithm, we solve Eq. 8. While in the outer 
algorithm, we first vary perturbation level 휀 by 
means of some iterative method which helps to 
exploits the knowledge of the computation of exact 
derivative of an extremizer say ∆(휀) with respect to 
perturbation level 휀. We solve the optimization 
problem addressed as in Eq. 4 by first solving a 
gradient system of Ordinary Differential Equations 
(ODE's). This computation only produces a local 
minimum of Eq. 4 which, in turn, gives an upper 
bound for perturbation level 휀 and hence as a result 
one obtained the lower bound for 𝜇∆𝐺

(𝑀). The 

purely complex uncertainties set ∆𝐺
∗  can be 

addressed by taking the inner algorithm to compute 
local optima for the maximization problem as 
addressed below: 

 
𝜆(휀) = argmax|𝜆|.                     (9) 

 

Here in Eq. 9 𝜆 ∈ Ʌ𝜀
∆𝐺
∗

(𝑀) which then produces a 
lower bound for 𝜇∆𝐺

(𝑀). 

3. Pure complex perturbations 

 In this section, we establish the solution of the 
inner problem as mentioned in Eq. 9. This includes 
the estimation of the quantity 𝜇∆𝐺

(𝑀) for matrix 𝑀 ∈

ℂ𝑛,𝑛 while taking into account a pure complex 
uncertainties set. 

 
∆𝐺

∗ = {diag(𝛼1𝐼1, … , 𝛼𝑛𝐼𝑛; ∆1, … , ∆𝐹): 𝛼𝑖 ∈ ℂ, ∆𝑗∈ ℂ𝑚𝑗,𝑚𝑗}.  

                    (10) 

 
In the following Lemma 3.1, we give the 

eigenvalue perturbation result in order to 
approximate the rate of change in the 
eigenvalue 𝜆(𝑡). 

 
Lemma 3.1: Let’s suppose matrix family Ω:ℝ → ℂ𝑛,𝑛 
and consider that 𝜆(𝑡) is one of the eigenvalue of 
Ω(𝑡) which converges to a simple eigenvalue say  𝜆1 
of Ω0 = Ω(0) as 𝑡 → 0. Then there exists 
eigenvectors 𝑣0 and 𝑤0 such that  𝜆(𝑡) is analytic 
near 𝑡 = 0  with  

 

�̇�(𝑡)|
𝑡=0

=
𝑤0

∗  Ω1𝑣0

𝑤0
∗𝑣0

 , 𝑤0
∗𝑣0 ≠ 0 ,𝑤0

∗𝑣0 = 1                (11) 

 
where, Ω1 = Ω̇(0)  and 𝑤∗, 𝑣0

∗ are the right and left 
eigenvectors of Ω0 associated to 𝜆0, that 
is (Ω0 − 𝜆0𝐼0)𝑣0 = 0 and 𝑤0

∗(Ω0 − 𝜆0𝐼) = 0. 
Since our goal is to give a solution for the 

maximization problem as ad-dressed in Eq. 9. This 
requires the computation of a uncertainty local ∆𝑙𝑜𝑐𝑎𝑙  
such that 𝜌(휀𝑀∆𝑙𝑜𝑐𝑎𝑙) has the maximum growth 
among all admissible perturbations ∆∈ ∆𝐺

∗  so that 
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∆having a unit 2-norm that is ‖∆‖2 ≤ 1. In the 
following we call 𝜆1 to be the greatest eigenvalue 
if |𝜆1| equals the spectral radius of the matrix 
(휀𝑀∆𝑙𝑜𝑐𝑎𝑙). 

Next we give the definition of a matrix valued 
function ∆(𝑡) which acts as a local extremizer and 
maximizes the modulus of the greatest 
eigenvalue 𝜆1(𝑡). 

 
Definition 3.1: A matrix values function ∆(𝑡) ∈ ∆𝐺

∗  
such that ‖∆‖2 ≤ 1 and 휀𝑀∆ possesses a greatest 
eigenvalue 𝜆(𝑡) that locally maximizes the modulus 

of Ʃ𝜀
∆𝐺(𝑀) is known as a local extremizer (Rehman, 

2017).  
 
The following theorem provides the 

characterization of local extremizers ∆(𝑡). 
 

Theorem 3.1: Let’s consider that 
 

∆𝑙𝑜𝑐𝑎𝑙= {diag(𝛼𝑖𝐼𝑟𝑖
; ∆𝑗)∀𝑖 = 1: 𝑆, 𝑗 = 1: 𝐹}, ‖∆𝑙𝑜𝑐𝑎𝑙‖2 = 1  

               (12) 
 

be a local extremizer of structured epsilon spectral 

value set Ʌ𝜀
∆𝐺
∗

(𝑀). Further we assume that the matrix 
(휀𝑀∆𝑙𝑜𝑐𝑎𝑙) possesses the simple largest 
eigenvalue 𝜆1 = |𝜆1|𝑒

𝑖𝜃 , 𝜃 ∈ 𝑅, having both right and 
left eigenvectors 𝑥 and 𝑦 which are scaled in such a 
way that 𝑘 = 𝑒𝑖𝜃𝑤∗𝑣 > 0. Partitioning these 
eigenvectors we have,  
 
𝑣 = (𝑣1

𝑇 , … , 𝑣𝑛
𝑇 , 𝑣𝑛+1

𝑇 , … , 𝑣𝑛+𝐹
𝑇 )𝑇 ,    

𝑢 = 𝐴∗𝑤 = (𝑢1
𝑇 , … , 𝑢𝑛

𝑇 , 𝑢𝑛+1
𝑇 , … , 𝑢𝑆+𝐹

𝑇 )𝑇 .                (13) 
 

The size of the components 𝑣𝑟 ,𝑢𝑟 equals to the 
size of the 𝑟𝑡ℎ block contained in local ∆𝑙𝑜𝑐𝑎𝑙 , We 
additionally consider that 
 
𝑢𝑟

∗𝑣𝑟 ≠ 0  , ∀ 𝑟 = 1,…𝑛                  (14) 
‖𝑢𝑛+ℎ‖2 ∙ ‖𝑥𝑛+ℎ‖2 ≠ 0   ∀ ℎ = 1: 𝐹.                 (15) 
 

Then, this implies that all blocks of  ∆𝑙𝑜𝑐𝑎𝑙  local 
possesses a unit2-norm, |𝛼𝑟| = 1, ∀ 𝑟 = 1: 𝑛  and 
‖∆ℎ‖2 = 1 , ∀ ℎ = 1: 𝐹. 

By the help of the following theorem we replace 
full blocks ∆𝑙𝑜𝑐𝑎𝑙  in a local extremizer with rank-1 
matrices. 

 
Theorem 3.2: Let’s consider that 
 
∆𝑙𝑜𝑐𝑎𝑙= {diag(𝛼𝑖𝐼𝑟𝑖

; ∆𝑗)∀𝑖 = 1: 𝑆, 𝑗 = 1: 𝐹}                (16) 

 
be a local extremizer and also consider that λ, 𝑥, 𝑧 as 
partitioned in previous theorem. Assume that Eq. 14 
holds, then every block ∆ℎ possess a singular value 
appears exactly equal to 1 with associated singular 
vectors as 𝑞ℎ = 𝛾ℎ𝑤𝑛+ℎ/‖𝑤𝑛+ℎ‖2 and 𝑟ℎ =
𝛾ℎ𝑢𝑛+ℎ/‖𝑢𝑛+ℎ‖2 for some |𝛾ℎ| = 1. Moreover, also 
consider that the matrix, 
 
∆̂= {diag(𝛼1𝐼1, … , 𝛼𝑛𝐼𝑛; 𝑎1𝑏1

∗, … , 𝑎𝐹𝑏𝐹
∗)}  

 
extremizer that 𝜌(휀𝑀∆𝑙𝑜𝑐𝑎𝑙) = 𝜌(휀𝑀∆̂). 

3.1. System of ODEs to compute extremal points 

of Ʌ𝛆
∆𝐆

∗

(𝐌)  

In order to approximate the local ∆(𝑡) for greatest 

eigenvalue |𝜆1(𝑡)|, with 𝜆1(𝑡) ∈ Ʌ𝜀
∆𝐺

∗

(𝐺) first we 
develop a matrix valued function ∆(𝑡) that 

maximizes the greatest eigenvalue 𝜆1(𝑡) of (휀𝑀∆(𝑡)) 

attains the maximal local growth. Secondly we then 
derive a gradient system of ordinary differential 
equations which must satisfy the choice of this initial 
value matrix ∆(𝑡) (Rehman, 2017). 

3.2. The optimization problem (Rehman, 2017) 

Consider that 𝜆1(𝑡) = |𝜆1|𝑒
𝑖𝜃 be the simple 

eigenvalue having eigenvectors 𝑣, 𝑤 which are 
normalized such that  

 
‖𝑤‖2 = ‖𝑣‖2 = 1, 𝑤∗𝑣 = |𝑤∗𝑣|𝑒−𝑖𝜃                 (17) 

 
as a result of Lemma 3.1, we get 

 
𝑑

𝑑𝑡
|𝜆(𝑡)|2 = 2|𝜆1|𝑅𝑒 (

𝑢∗∆̇ 𝑣

𝑒𝑖𝜃𝑤∗𝑣
) =

2|𝜆1|

|𝑤∗𝑣|
𝑅𝑒(𝑢∗∆̇ 𝑣)                (18) 

 

where 𝑢 = 𝑀∗𝑤. 
By considering ∆∈ ∆𝐺 , we compute the direction 

∆̇= 𝑈 which locally maximizes the growth of the 
modulus of greatest eigenvalue 𝜆1. From this 
discussion, we get 

 
𝑈 = diag(𝑤1𝐼𝑟1

, … , 𝑤𝑁𝐼𝑟𝑁
; Ω1, … , ΩF)                 (19) 

 
as a solution of the maximization problem. 

 
𝑈∗ = argmax{𝑅𝑒(𝑢∗𝑈𝑥)}  

 
subject to 
 
𝑅𝑒(𝛿�̅�𝑤𝑖) = 0, 𝑖 = 1:𝑁   

 
and 
 
𝑅𝑒〈∆𝑗 , Ωj〉 = 0, 𝑗 = 1: 𝐹                  (20) 

 
The Lemma 3.2 gives the solution of the 

optimization problem as discussed in the Eq. 20. 
 

Lemma 3.2: We make use of the notation as 
introduced earlier in the above discussion and 𝑣, 𝑢 
partitioned a solution 𝑈∗  of the maximization 
problem discussed in Eq. 20 is given as (Rehman, 
2017):  

 
𝑈∗ = {diag(𝑤1𝐼𝑟1

, … , 𝑤𝑁𝐼𝑟𝑁
; Ω1, … , ΩF)}                (21) 

 
with, 

 
𝑤𝑖 = Ѵ𝑖(𝑣𝑖

∗𝑢𝑖 − 𝑅𝑒(𝑣𝑖
∗𝑢𝑖𝛿�̅�)𝛿𝑖), ∀ 𝑗 = 1:𝑁                 (22) 

 
and 
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Ωj = 휁𝑗(𝑢𝑁+𝑗𝑣𝑁+𝑗
∗ − 𝑅𝑒(∆𝑗 , 𝑢𝑁+𝑗 𝑣𝑁+𝑗

∗ )∆𝑗) , ∀ 𝑗 = 1:𝐹.  (23) 

 
Here in the solution 𝑈∗ the coefficient Ѵ𝑖 > 0 is 

nothing but the reciprocal of the absolute value of 
the right-hand side in Eq. 22 while if it is other than 
zero, and Ѵ𝑖 = 1 else. Similarly the coefficient 휁𝑗 > 0 

and is the reciprocal of the Frobenius norm of the 
matrix obtained on the right hand side in Eq. 23, if it 
is other than zero, and 휁𝑗 = 1 else. 

The result obtained in Lemma 3.2 can 
alternatively be expressed as: 

 
U∗ = 𝐶1𝑃∆𝐺

∗ (𝑧𝑥∗) − 𝐶2∆.                  (24) 

 
In Eq. 18, 𝑃∆𝐺

∗ (∙) is the orthogonal projection 

while 𝐶1, 𝐶2 ∈ ∆𝐺
∗  are diagonal matrices where the 

orthogonal matrix 𝐶1 positive. 

4. The gradient system of ODEs  

Lemma 4.1: allows us to consider the following 
differential equations on the manifold ∆𝐺

∗ . 
 

∆̇= 𝐶1𝑃∆𝐺
∗ (𝑢𝑣∗) − 𝐶2∆.                  (25) 

 
In Eq. 25, 𝑣(𝑡) is an eigenvector having a unit 2-

norm and it is associ-ated to a simple 
eigenvalue 𝜆1(𝑡) of the matrix 휀𝑀∆(𝑡) associated a 
fixed perturbation 휀 > 0. The ordinary differential 
Eq. 25 represents a gradient system because right-
hand side is nothing but the projected gradient 
of  𝑈 → 𝑅𝑒(𝑢∗𝑈𝑣). 

4.1. Choice of initial value matrix ∆𝟎 and  𝛆𝟎 

In two-level algorithm for approximating 휀0 we 
make use of the admissible perturbation obtained 
for the previous value 휀1 as the initial value matrix 
for the gradient system of ODEs. While in order to 
gain the locally maximal growth of |𝜆1(𝑡)| we choose 
(Rehman, 2017): 

 
∆̇= 𝐶𝑃∆𝐺

(𝑤𝑣∗)                   (26) 

 
the positive diagonal matrix 𝐶 is taken in such a way 
that ∆0∈ ∆𝐺 . While on the other hand a very natural 
choice for 휀 is given as: 

 

휀 =
1

�̂�∆𝐺
(𝑀)

                   (27) 

 
here  �̂�∆𝐺

(𝑀) is the upper bound of 𝜇-value which is 

approximated by computed by well-known MATLAB 
function mussv. 

4.2. Outer algorithm  

In this section, we approximate the lower bound 
of SSV, 𝜇∆𝐺

(𝑀) by means of outer algorithm. But we 

note immediately the fact that the principles remain 
same as discussed in the previous case, so one can 
treat the case of purely complex uncertainties in 

detail and provide a briefer discussion on the 
extension to the case of mixed complex and real 
uncertainties (Rehman, 2017). 

5. Numerical experimentation 

In this section, we present a comparison of the 
lower bounds of 𝜇-value approximated by mussv and 
the algorithm Rehman (2017) for a family of Discrete 
Fourier Transform matrices. 

 
Example 5.1: Consider the following two 
dimensional Fourier Transform matrix 𝑇2 given as, 
 

𝑇2 = [
1 1
1 −1

]  

 

consider the perturbation set as: 
 

∆𝐺= {diag(∆1): ∆∈ ℂ2,2}  

 
Using Matlab function mussv, we obtain the 

perturbation ∆̂ with ∆̂= [
0 0

0.5000 −0.5000
] while 

 ‖∆̂‖
2

= 0.7071.   

For this example, we obtain the upper 
bound  𝜇𝑃𝐷

𝑢𝑝𝑝𝑒𝑟
= 1.4142 while the lower bound is 

approximated as  𝜇𝑃𝐷
𝑙𝑜𝑤𝑒𝑟 = 1.4142.  

Now, by making use of the algorithm Rehman 
(2017), we obtain the perturbation 휀∗∆∗ with ∆∗=

[
−0.1464 0.3536
0.3536 −0.8536

] while 휀∗ = 0.7071 and ‖∆∗‖2 =

1.  

The same lower bound is approximated 𝜇𝑁𝑒𝑤
𝑙𝑜𝑤𝑒𝑟 =

1.4142 as one approximated by MATLAB function 
mussv. Next we consider various cases for Discrete 
Fourier Transform matrix  𝑇2 while taking different 
block diagonal structures. 

 
Case 5.1: Consider the perturbation set as: 

 
∆𝐺= {diag(𝛿1𝐼1, 𝛿2𝐼2): 𝛿1, 𝛿2 ∈ ℝ}  

 
Using MATLAB function mussv, we obtain the 

perturbation ∆̂ with ∆̂= 1.0𝑒 + 050 ∗

[
5.0000 0

0 5.0000
] while ‖∆̂‖

2
= 5.0000𝑒 + 050. 

For this example, we obtain the upper 
bound 𝜇𝑃𝐷

𝑢𝑝𝑝𝑒𝑟
= 1.4142 while the lower bound is 

approximated as 𝜇𝑃𝐷
𝑙𝑜𝑤𝑒𝑟 = 1.3874.  

Now, by making use of the algorithm Rehman 
(2017), we obtain the perturbation 휀∗∆∗ with ∆∗=

[
−1 0
0 −1

] while 휀∗ = 0.7071 and ‖∆∗‖2 = 1.  

The same lower bound is approximated 𝜇𝑁𝑒𝑤
𝑙𝑜𝑤𝑒𝑟 =

1.4142 as one approximated by MATLAB function 
mussv. 

 
Case 5.2: Consider the perturbation set as: 

 
∆𝐺= {diag(𝛿1𝐼1, 𝛿2𝐼2): 𝛿1 , 𝛿2 ∈ ℂ}  
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Using MATLAB function mussv, we obtain the 

perturbation ∆̂ with ∆̂= [
−0.7071 0

0 −0.7071
] while 

 ‖∆̂‖
2

= 0.7071.  

For this example, we obtain the upper 
bound  𝜇𝑃𝐷

𝑢𝑝𝑝𝑒𝑟
= 1.4142 while the lower bound is 

approximated as 𝜇𝑃𝐷
𝑙𝑜𝑤𝑒𝑟 = 1.4142.  

Now, by making use of the algorithm Rehman 
(2017), we obtain the perturbation 휀∗∆∗ with ∆∗=

[
−1 0
0 −1

] while  휀∗ = 0.7071 and ‖∆∗‖2 = 1.  

The same lower bound is approximated 𝜇𝑁𝑒𝑤
𝑙𝑜𝑤𝑒𝑟 =

1.4142 as one approximated by MATLAB function 
mussv. 

 
Case 5.3: Consider the perturbation set as: 
 
∆𝐺= {diag(𝛿1𝐼1, 𝛿2𝐼2): 𝛿1  ∈ ℝ, 𝛿2 ∈ ℂ}  

 

Using MATLAB function mussv, we obtain the 

perturbation ∆̂ with ∆̂= [
−0.7071 0

0 −0.7071
] while 

 ‖∆̂‖
2

= 0.7071.  

For this example, we obtain the upper 
bound  𝜇𝑃𝐷

𝑢𝑝𝑝𝑒𝑟
= 1.4142 while the lower bound is 

approximated as 𝜇𝑃𝐷
𝑙𝑜𝑤𝑒𝑟 = 1.4142.  

Now, by making use of the algorithm Rehman 
(2017), we obtain the perturbation 휀∗∆∗ with ∆∗=

[
−1 0
0 −1

] while 휀∗ = 0.7071 and ‖∆∗‖2 = 1. 

The same lower bound is approximated 𝜇𝑁𝑒𝑤
𝑙𝑜𝑤𝑒𝑟 =

1.4142 as one approximated by MATLAB function 
mussv. 

 
Example 5.2: Consider the following three 
dimensional Fourier Transform matrix 𝑇3 given as: 

 

𝑇3 = [
1.0000 + 0.0000𝑖 1.0000 + 0.0000𝑖 1.0000 + 0.0000𝑖
1.0000 + 0.0000𝑖 −0.5000 − 0.8660𝑖 −0.5000 + 0.8660𝑖
1.0000 + 0.0000𝑖 −0.5000 + 0.8660𝑖 −0.5000 − 0.8660𝑖

] 

 
consider the perturbation set as: 

 
∆𝐺= {diag(∆1): ∆∈ ℂ3,3}  

Using MATLAB function mussv, we obtain the 
perturbation ∆̂ with 

 

∆̂= [
0.3333 − 0.0000𝑖 0.3333 + 0.0000𝑖 0.3333 + 0.0000𝑖
0.0000 + 0.0000𝑖 0.0000 + 0.0000𝑖 0.0000 + 0.0000𝑖
0.0000 + 0.0000𝑖 −0.0000 + 0.0000𝑖 −0.0000 + 0.0000𝑖

] 

 
while ‖∆̂‖

2
= 0.5774. 

For this example, we obtain the upper 
bound  𝜇𝑃𝐷

𝑢𝑝𝑝𝑒𝑟
= 1.7321 while the lower bound is 

approximated as 𝜇𝑃𝐷
𝑙𝑜𝑤𝑒𝑟 = 1.6301.  

Now, by making use of the algorithm Rehman 
(2017), we obtain the perturbation 휀∗∆∗ with 

 

∆∗= [
0.7887 + 0.0000𝑖 0.2887 + 0.0000𝑖 0.2887 + 0.0000𝑖
0.2887 + 0.0000𝑖 0.1057 + 0.0000𝑖 0.1057 + 0.0000𝑖
0.2887 + 0.0000𝑖 0.1057 + 0.0000𝑖 0.1057 + 0.0000𝑖

] 

 

While 휀∗ = 0.5774 and ‖∆∗‖2 = 1. 

The same lower bound is approximated 𝜇𝑁𝑒𝑤
𝑙𝑜𝑤𝑒𝑟 =

1.7321 as one approximated by MATLAB function 
mussv. 

Example 5.3: Consider the following four 
dimensional Fourier Transform matrix 𝑇4 given as, 

 

𝑇4 = [

1.0000 + 0.0000𝑖 1.0000 + 0.0000𝑖 1.0000 + 0.0000𝑖 1.0000 + 0.0000𝑖
1.0000 + 0.0000𝑖 0.0000 − 1.0000𝑖 −1.0000 + 0.0000𝑖 0.0000 + 1.0000𝑖
1.0000 + 0.0000𝑖 −1.0000 + 0.0000𝑖 1.0000 + 0.0000𝑖 1.0000 + 0.0000𝑖
1.0000 + 0.0000𝑖 0.0000 + 1.0000𝑖 −1.0000 + 0.0000𝑖 0.0000 − 1.0000𝑖

] 

 
consider the perturbation set as: 

 
∆𝐺= {diag(∆1): ∆∈ ℂ4,4}.  

Using MATLAB function mussv, we obtain the 
perturbation ∆̂ with 

 

∆̂= [

0.0519 − 0.0419𝑖 0.0890 + 0.1058𝑖 −0.0241 − 0.0033𝑖 −0.0054 − 0.0606𝑖
0.1629 − 0.0291𝑖 0.0674 + 0.3364𝑖 −0.0485 − 0.0359𝑖 0.0606 − 0.1383𝑖
0.0079 + 0.0631𝑖 −0.1304 + 0.0192𝑖 0.0147 − 0.0179𝑖 0.0518 + 0.0260𝑖

−0.0631 + 0.0079𝑖 −0.0192 − 0.1304𝑖 0.0179 + 0.0147𝑖 −0.0260 + 0.0518𝑖

] 

 
While ‖∆̂‖

2
= 0.5000.  

For this example, we obtain the upper 
bound 𝜇𝑃𝐷

𝑢𝑝𝑝𝑒𝑟
 = 2.0000 while the lower bound is 

approximated as 𝜇𝑃𝐷
𝑙𝑜𝑤𝑒𝑟 = 2.0000.  

Now, by making use of the algorithm Rehman 
(2017), we obtain the perturbation 휀∗∆∗ with: 
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∆∗= [

−0.0000 − 0.0000𝑖 −0.0000 + 0.0000𝑖 0.0000 − 0.0000𝑖 0.0000 − 0.0000𝑖
−0.0000 + 0.0000𝑖 0.0000 + 0.5000𝑖 −0.0000 − 0.0000𝑖 −0.0000 − 0.5000𝑖
0.0000 − 0.0000𝑖 −0.0000 − 0.0000𝑖 0.0000 − 0.0000𝑖 0.0000 + 0.0000𝑖
0.0000 − 0.0000𝑖 −0.0000 − 0.5000𝑖 0.0000 + 0.0000𝑖 −0.0000 + 0.5000𝑖

] 

 
While 휀∗ = 0.5000 and ‖∆∗‖2 = 1. 

The same lower bound is approximated 𝜇𝑁𝑒𝑤
𝑙𝑜𝑤𝑒𝑟 =

2.0000 as one approximated by MATLAB function 
mussv. 

Example 5.4: Consider the following five 
dimensional Fourier Transform matrix 𝑇5 given as, 

 

𝑇5 =

[
 
 
 
 
1 1 1 1 1
1 0.3090 − 0.9511𝑖 −0.8090 − 0.5878𝑖 −0.8090 + 0.5878𝑖 0.3090 − 0.9511𝑖
1 −0.8090 − 0.5878𝑖 0.3090 + 0.9511𝑖 0.3090 − 0.9511𝑖 −0.8090 + 0.5878𝑖
1 −0.8090 + 0.5878𝑖 0.3090 − 0.9511𝑖 0.3090 + 0.9511𝑖 −0.8090 − 0.5878𝑖
1 0.3090 + 0.9511𝑖 −0.8090 + 0.5878𝑖 −0.8090 − 0.5878𝑖 0.3090 − 0.9511𝑖 ]

 
 
 
 

 

 
consider the perturbation set as: 

 
∆𝐺= {diag(∆1): ∆∈ ℂ5,5}.  

Using MATLAB function mussv, we obtain the 
perturbation ∆̂ with 

 

∆̂=

[
 
 
 
 
0 0 0 0 0
0 −0.0431 + 0.1212𝑖 0.0697 − 0.0127𝑖 −0.0697 + 0.0127𝑖 0.0431 − 0.1212𝑖
0 0.0697 + 0.1302𝑖 0.0431 − 0.0690𝑖 −0.0431 + 0.0690𝑖 −0.0697 − 0.1302𝑖
0 −0.0697 − 0.1302𝑖 −0.0431 + 0.0690𝑖 0.0431 − 0.0690𝑖 0.0697 + 0.1302𝑖
0 0.0431 − 0.1212𝑖 −0.0697 + 0.0127𝑖 0.0697 − 0.0127𝑖 −0.0431 + 0.1212𝑖]

 
 
 
 

 

 
While  ‖∆̂‖

2
= 0.4472.  

For this example, we obtain the upper 
bound  𝜇𝑃𝐷

𝑢𝑝𝑝𝑒𝑟
= 2.2362 while the lower bound is 

approximated as 𝜇𝑃𝐷
𝑙𝑜𝑤𝑒𝑟 = 2.2362.  

Now, by making use of the algorithm Rehman 
(2017), we obtain the perturbation 휀∗∆∗ with 

 

∆∗=

[
 
 
 
 
0 0 0 0 0
0 0.4627𝑖 0.1314𝑖 −0.1314𝑖 −0.4627𝑖
0 0.1314𝑖 0.0373𝑖 −0.0373𝑖 −0.1314𝑖
0 −0.1314𝑖 −0.0373𝑖 0.0373𝑖 0.1314𝑖
0 −0.4627𝑖 0.1314𝑖 0.1314𝑖 0.4627𝑖 ]

 
 
 
 

 

 
While 휀∗ = 0.4472 and ‖∆∗‖2 = 1.  
 

The same lower bound is approximated 𝜇𝑁𝑒𝑤
𝑙𝑜𝑤𝑒𝑟 =

2.2362 as one which is approximated by MATLAB 
function mussv.  

Figs. 1-3 represent the graphical analysis of the 
bounds of structured singular values extracted by 
NewAlgo with calculated by MATLAB function 
mussv. 

 
Fig. 1: Comparison of lower and upper bounds of SSV 
computed by mussv and NewAlgo for matrix valued 

function 𝑇2(𝑛, 𝑤) for the various values of frequency 𝑤 =
1: 4 and 𝑛 = 3 

 
Fig. 2: Comparison of lower and upper bounds of SSV 
computed by mussv and NewAlgo for matrix valued 

function  𝑇3(𝑛, 𝑤) for the various values of frequency 𝑤 =
1: 4 and 𝑛 = 4 

 
Fig. 3: Comparison of lower and upper bounds of SSV 
computed by mussv and NewAlgo for matrix valued 

function  𝑇3(𝑛, 𝑤) for the various values of frequency 𝑤 =
1: 4 and 𝑛 = 4 

6. Conclusion 

In this article we have presented the 
approximation of -values for the family of Discrete 
Fourier Transform matrices. Different experiments 
have been performed while taking into account the 
different Discrete Fourier Transform matrices with 
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various dimensions. The experimental results show 
how the lower bounds of SSV approximated by 
mussv function and the one approximated by 
algorithm of Rehman (2017) are related to each 
other's. 

List of symbols 

ΔG:  Family of block diagonal matrices  
ɛ:  Perturbation level 
Δ0:  Initial admissible perturbation 
µ:  Structured singular values 
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